Design Studies for the First Compressor Beamline for the Femtosecond X-Ray Source

Ina Reichel

Femtosource Meeting, July 17th, 2002

July 17th 2002

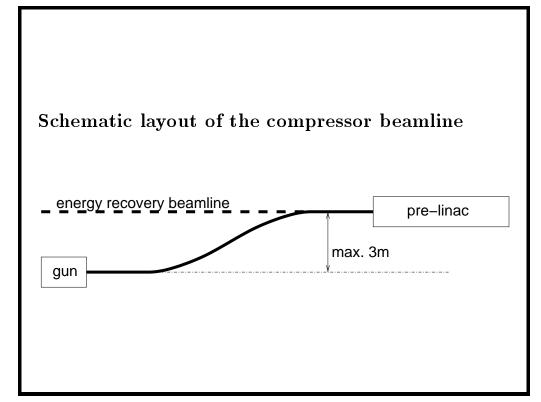
Design Studies for the First Compressor Beamline

Ina Reichel

contents

- Introduction
- Lattices that were tried
 - Double Bend Achromat
 - Triple Bend Achromat
 - Triple Bend Achromat with split magnet
 - FODO with missing magnet
 - dedicated compressor
- Summary and Outlook

1 Introduction


The beamline for the first compressor serves two purposes:

- compress the bunch length from 20 ps to 10 ps
- offset the path of the beam sideways to allow a higher energy beam to enter the pre-linac in a straight line (for an energy recovery upgrade)

July 17th 2002

Design Studies for the First Compressor Beamline

Ina Reichel

Design Studies for the First Compressor Beamline

Compression

- to obtain compression, R_{56} needs to be $0.72\,\mathrm{m}$
- preferably just get it from the bending
- no ideal position for dedicated compressor
- if possible, R_{56} should be adjustable
- space restrictions
- bending radius should be about 1.5 m to avoid CSR

July 17th 2002

Design Studies for the First Compressor Beamline

Ina Reichel

Magnets

- $10 \,\mathrm{cm}$ long quadrupole magnets with |k| < 40
- 30 cm long dipole magnets with 10° bending angle corresponding to about 1.7 m bending radius

Lattices that were Tried

- 1. Double Bend Achromat
- 2. Triple Bend Achromat
- 3. Triple Bend Achromat with split magnet
- 4. FODO with missing magnet
- 5. dedicated compressor

July 17th 2002

Design Studies for the First Compressor Beamline

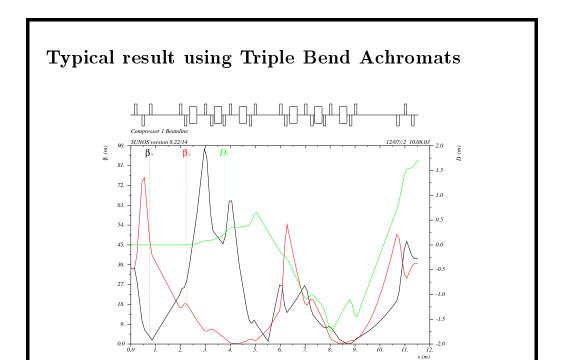
Ina Reichel

Double Bend Achromat

- simplest lattice to achieve zero dispersion at both ends
- only small number of quadrupole magnets, therefore not very flexible
- only studied briefly and no solution found in that time

Triple Bend Achromat

- first a classical TBA was tried
- started with true achromat but allowed to change quadrupole strengths to match all boundary conditions
- it was tried to keep the lattice as symmetric as possible
- even with dropping all symmetry conditions, only small values of R_{56} were obtained


July 17th 2002

Design Studies for the First Compressor Beamline

Ina Reichel

Triple Bend Achromat II

- introduce one more quadrupole in between bending magnets
- get large enough R_{56}
- two problems:
 - 1. large derivative of the dispersion at one end of the line
 - 2. very small β -functions at several places

July 17th 2002

Design Studies for the First Compressor Beamline

Ina Reichel

Triple Bend Achromat with Split Magnet

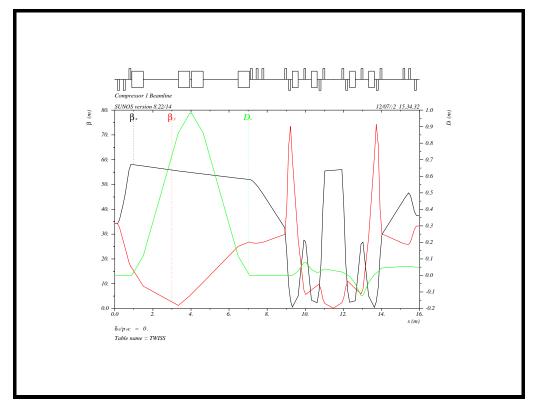
- use two 10° and two 5° bending magnets in the second TBA instead of three 10° magnets in order to get a more asymmetric lattice
- all permutations of magnets were tried
- no solution found as problems persisted

FODO with Missing Magnet

- FBD FBDBF
- missing magnet scheme can produce fairly large dispersion
- if dispersion was and dispersion prime were zero at the ends (required), R_{56} was small or the space requirements were not fulfilled

July 17th 2002

Design Studies for the First Compressor Beamline


Ina Reiche

Dedicated Compressor

- try to use same bending magnets as for bending sections
- located before bending section
- first design just the compressor, than add the bending section
- for larger bending angles use 60 cm bending magnets

bending angle (in rad)	compressor length a
0.2	$19.3\mathrm{m}$
0.3	$9.3\mathrm{m}$
0.4	$5.8\mathrm{m}$

^aThe length is measured from the center of the first bending magnet to the center of the last bending magnet with the centers of the center magnets being 1 m apart.

July 17th 2002

Design Studies for the First Compressor Beamline

Ina Reiche

Summary and Outlook

- different options for the beamline were studied
- the large required R_{56} can only be realized by a dedicated compressor
- compressor lattice needs some fine tuning
- study a compressor with a tunable R_{56}
- CSR studies need to be done